DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Project DE-EE0009771:

Upgrading Biogas through in situ Conversion of Carbon Dioxide to Biomethane in Anaerobic Digesters

Zhen (Jason) He
Department of Energy, Environmental and Chemical Engineering
Washington University in St. Louis

Project Overview

Goal: develop an innovative system that can accomplish *in situ* biogas upgrading via biological conversion of CO₂ to CH₄

Alignment with BETO FOA goals and requirements

- (1) This project will develop a new technology to convert CO₂ in biogas to CH₄
- (2) A high-quality RNG will be produced to meet pipeline specifications
- (3) This project focuses on bench-scale studies and the results will help formulate a strategy for further scaling up
- (4) Real biogas will be used as a feedstock to CO₂ conversion
- (5) Both LCA and TEA will be conducted throughout the project and help identify key issues in the bench system.

Biological pathways for biogas upgrading

$$CO_2 + H_2 \xrightarrow{Hydrogenotrophic methanogens} CH_4 + H_2O$$

$$CO_2 + H_2 \xrightarrow{Homoacetogenic\ microorganisms} acetic\ acids \xrightarrow{Acetotrophic\ methanogens} CH_4 + H_2O$$

$$CO_2 + H^+ + e^{-\frac{electrochemical\ (cathode)}{C}CH_4 + H_2O}$$

Limitations of current upgrading technologies

- Mass transfer of H₂ in a liquid phase
- Low-cost hydrogen gas
- Negative effects of H₂ partial pressure (in situ hydrogen supply)
- pH increase due to CO₂ removal (in situ hydrogen supply)

Approach - our proposed system

Novelty

- Integrated "ex situ" with "in situ"
- Highly-efficient H₂ supply
- Simpler operation
- Residue nutrients use by CO₂ conversion

Project Team

Team Management

- Bimonthly meetings
- Annual in-person project meetings
- Sub-group communication
- Joint publications/presentations
- Student visits
- Education and outreach to underrepresented community

Tasks

Task 1: Initial technical verification

Task 2: Accomplish *in situ* biological CO₂ conversion to CH₄ with membrane-assisted H₂ delivery

Task 3: Develop an organic thermoelectric generator that is low cost, scalable, and biocompatible for waste heat conversion to electricity

Task 4: Synthesize custom sorbents in-house featuring a transition metal-oxide nanomaterial for gas cleaning

Task 5: Conduct life cycle analysis and techno-economic assessment of the proposed system.

Task Integration

Go/No Go Decision Points

Budget Period 1 Go/No-Go Decision Point: (Literature) baseline performance metrics verified.

Budget Period 2 Go/No-Go Decision Point #2: Development of individual units with the desired performance in the individual units.

End of Project Goal: A scalable and innovative biogas upgrading system at TRL 4 can produce pipeline quality renewable natural gas containing >97% CH₄ via two steps, biological CO₂ conversion to CH₄ that generates a biogas of >95% CH₄ and gas cleaning that reduces impurities and further enhances the CH₄ content to >97%.

Progress and Outcome

- Budget Period 1 Go/No-Go Decision Point (FY22Q4)
- [Milestone 2.1.1] Completion of system setup with gas-permeable membrane unit to create different operational zones (FY23Q1)
- [Milestone 5.2.1] Establish a process model for the proposed system based on the experimental data (FY23Q1)

- Patent disclosure filed
- One manuscript submitted

- [Milestone 2.1.2] Achieve 85% conversion of CO₂ to CH₄ and 90% of H₂ utilization efficiency
- [Milestone 3.1.1] Virtually screen the conjugated polymers using supervised machine learning with a large molecular space to focus on minimizing thermal conductivity while maximizing the power factor to produce a record (material) zT value
- [Milestone 4.1.1] Establish metrics and reference performance data
- [Milestone 5.1.1] Draft version of GREET with pathway for the proposed system

Meta Analysis of Biogas Upgrading

Task 2: System performance: methane production

Phase	Hydrogen flow rate (mL/min)	Biogas production rate (mL/L_reactor/day)	CH ₄ in biogas (%)	CO ₂ in biogas (%)
1	0.421 (2:1)	1113.68±72.23	70.50±0.99	30.46±0.79
2	1.419 (4:1)	1274.04±108.41	83.03±1.08	18.71±0.48
3	2.130 (6:1)	1478.95	90.62	9.36

- A functional biosystem is established
- Initial feasibility is demonstrated
- Upgrading is accomplished with synthetic WW
- Residue nutrients use by CO₂ conversion

Task 3: TEM material development

- P-type: The 10 vol% Formic Acid as dopant and post-treatment with DMSO achieved both higher electrical conductivity and Seebeck coefficient. The highest value of power factor is about 110 uW m⁻¹ K⁻² which reached our intermediate target.
- N-type: We manufactured PEDOT solution and CNT solution in the lab, and confirmed that filtered PEDOT solution showed improved electrical conductivity and Seebeck coefficients.

Task 4: Flame spray synthesis of sorbents

proposed concept

MgO powder

- Building database of adsorbant properties reported in literature
- Designed an improved two-fluid nozzle (2nd Gen).
- Magnesium oxide (MgO) was successfully synthesized using the flame spray pyrolysis system (MgO is a relatively wellestablished mesoporous material for CO2 adsorption for both high and low temperature applications and will serve as a baseline for more complex mixed-metal oxides to be synthesized in the future).
- Single-particle pyrolysis model is being developed.

Task 5: Life cycle assessment

- Draft LCA model is being developed based on initial assumptions and available inventory data.
- Model will be updated and refined as project progresses.
- Experimental data for mass and energy flow rates are being collected.
- Coordinate input and output data with the TEA team for alignment.

Task 5: Techno-Economic Analysis

- The 1st version of TEA model is developed
- The process model framework is being expanded to include the microbial electrochemical cell
- Initial TEA results showed that the estimated biomethane production cost is about \$1.33/m3.
- Close interaction with LCA teams to discuss the harmonized approach between TEA and LCA

Impacts

- A new strategy for converting waste into bioenergy that will contribute to "Decarbonizing
 Transportation Fuel".
- Reduce carbon emission through utilizing CO₂ for upgrading biogas.
- New business opportunities may be created to allow the developed system to be adopted by a wide range of potential users of treating food/beverage wastewater, livestock wastes, and municipal wastes.
- Strategic partnership(s) will be established with the end users that may provide resources to further develop the system to TRL 6 (beyond this DOE project) towards commercialization.
- This project will also advance TEG technology for the applications with low temperature gradients and introduce it into the field of waste conversion to bioenergy.

Education Outreach and DEI

- >50% trainees (graduate students and postdocs) are from the underrepresented groups
- Provide a hands-on water education program to the 5th graders at the School District of University City, which has 90% of its students identified as minority.
- Establish a connection with Lincoln University of Missouri, a historically black college, and explore the opportunities of research collaboration and student recruitment.

Summary

- This project has successfully passed the Verification.
- The initial results have demonstrated that the proposed system can upgrade biogas to >90% methane while treating a synthetic wastewater.
- Both P- and N-Type TEG materials exhibited enhanced properties.
- Initial absorbent material synthesis and LCA/TEA models are being developed.
- The project is moving forward as scheduled in the Budget Period 2

Quad Chart Overview

Timeline

Project start date: Oct. 1, 2021

• Project end date: April 30, 2025

	FY22 Costed	Total Award
DOE Funding	\$121,715	\$2,300,000
Project Cost Share	\$59,621	\$581,916

TRL at Project Start: 2 TRL at Project End: 4

Project Goal

This project aims to develop an innovative system that can accomplish in situ biogas upgrading via biological conversion of CO₂ to CH₄.

End of Project Milestone

- Pipeline quality renewable natural gas containing >97% CH₁
- The target CO₂ concentration in the final RNG is <1%.
- The H₂S content will be kept below 5.7 mg/Nm3 (or 0.25 grain/110 scf).
- Comprehensive model involving both biofilm model and system
- Finalized LCA and TEA models

Funding Mechanism

FY21 BETO Scale-up and Conversion FOA DE-FOA-0002396

Project Partners

• Anheuser-Busch Companies

Additional Slides

Study	Total	Mean	SD	Mean	MRAW	95%-CI	Weight
Reactor Configuration =	in situ			1000			
Agneessens et al. (a)	60	93.14	5.3130		93.14	[91.80; 94.49]	2.2%
Agneessens et al. (b)	12	82.67	4.7958	-	82.67	[79.95; 85.38]	2.1%
Alfaro et al.	22	81.80	4.8203	-	81.80	[79.78; 83.81]	2.2%
Bassani et al. (a)			3.1185	-	91.89	[89.40; 94.39]	2.2%
Bassani et al. (b)			2.4960		77.28	[76.85; 77.72]	2.2%
Corbellini et al. (a)			1.0000		88.98	[88.68; 89.28]	2.2%
Corbellini et al. (b)			0.5777		76.19	[75.96; 76.42]	2.2%
Corbellini et al. (c)			2.1959		80.55	[80.16; 80.94]	2.2%
Deschamps et al.			1.1784		97.38	[96.82; 97.94]	2.2%
Díaz et al.			4.3256	_ =	87.28	[86.49; 88.06]	2.2%
Fontana et al.			0.1000	- B	63.06	[63.04; 63.09]	2.2%
Hafuka et al.			1.2791		87.80	[87.39; 88.21]	2.2%
Jiang et al.			2.7567		91.12	[90.64; 91.61]	2.2%
Kim et al.			1.4792	100	89.65	[89.32; 89.98]	2.2%
Luo and Angelidaki (b)			2.9894	===	86.92	[84.96; 88.87]	2.2%
Luo and Angelidaki (c)			1.6935		88.23	[87.83; 88.64]	2.2%
Luo et al.			2.5000	-	62.00	[59.17; 64.83]	2.1%
Mulat et al.	100		1.0600		88.96	[87.76; 90.16]	2.2%
Park et al. Tao et al.			5.7639 1.7431		92.86 68.10	[91.26; 94.46]	2.2%
			0.4376			[67.85; 68.35]	2.2%
Tartakovsky et al.			1.8107		86.52 76.74	[86.40; 86.63] [76.04; 77.44]	2.2%
Thapa et al. Treu et al.			1.9912	No.	96.00	[94.41; 97.60]	2.2%
Tsapekos et al.			5.4449		90.47	[88.14; 92.79]	2.2%
Voelklein et al.			6.2757		83.00	[77.97; 88.02]	2.1%
Wahid and Horn (a)			0.6189		61.77	[61.64: 61.91]	2.1%
Wahid and Horn (b)			1.6113		73.73	[73.45; 74.01]	2.2%
Wahid et al.			2.9432		97.64	[96.79; 98.49]	2.2%
Xu et al.			3.1881	E2	94.05	[92.72; 95.38]	2.2%
Yun et al.			1.9475		97.80	[97.34; 98.25]	2.2%
Zhao et al.	104	89.18	2.3149		89.18	[88.74; 89.63]	2.2%
Zhu et al. (a)	56	74.42	2.4888	•	74.42	[73.77; 75.08]	2.2%
Zhu et al. (b)	84	69.67	1.1489		69.67	[69.42; 69.91]	2.2%
Zhu et al. (c)	42	67.00	1.0472		67.00	[66.68; 67.32]	2.2%
Random effects model	1916			~	83.35	[79.60; 87.10]	73.8%
Heterogeneity: $I^2 = 100\%$, τ^2	= 114.9	887, p =	0				
Reactor Configuration =	ex situ						
Bassani et al. (c)	400	96.85	1.2579		96.85	[96.73; 96.98]	2.2%
Daglioglu et al.	24	87.66	1.3019		87.66	[87.14; 88.19]	2.2%
Ghofrani-Isfahani et al. (a)	320	95.72	1.2472		95.72	[95.59; 95.86]	2.2%
Ghofrani-Isfahani et al. (b)	228	96.21	2.1543		96.21	[95.93; 96.49]	2.2%
Jensen et al. (b)	21	92.21	2.6706	-	92.21	[91.07; 93.35]	2.2%
Kougias et al.			0.5117		83.70	[83.58; 83.83]	2.2%
Logroño et al.			3.9310		87.19	[85.98; 88.41]	2.2%
Luo and Angelidaki (a)			3.1671		97.56	[97.03; 98.10]	2.2%
Porte et al.			0.4632		97.28	[97.21; 97.34]	2.2%
Sekoai et al.			3.3425	_ 🖂	96.32	[95.66; 96.97]	2.2%
Tang et al.			3.1011	_ =	92.11	[90.43; 93.80]	2.2%
Voelklein et al.		82.97	2.6812		82.97	[81.82; 84.11]	2.2%
Random effects model Heterogeneity: $I^2 = 100\%$, τ^2	1552 = 29.36	59, p = 1)		92.16	[88.71; 95.62]	26.2%
Random effects model	3468			<	85.65	[82.58; 88.73]	100.0%
Prediction interval	5.50					[64.60; 106.70]	
Heterogeneity: $I^2 = 100\%$, τ^2	= 106.7	547 n =	0			[,	
Test for subgroup differences				01) 60 70 80 90 100			

Reactor performance: pH & COD

pH observation is stable, within the optimal range, 6.8-7.2.

Current results:

The addition of 2, 4, and 6 equivalents of H₂ relative to CO₂ was investigated.;

Change the calculation method for methane content:

Relative $CH_4\%$ = $CH_4\%/(CH_4\%+CO_2\%)$

>90% methane production was achieved;

N₂% was under detect limit;

The amount of CO₂ dropped after hydrogen gas injected and no H₂ was detected in the outlet gas.

P-type TE Material Analysis

P-type TE Material Analysis

Organic polymer used

○ PEDOT:PSS (PH1000)

TE performance improving process:

O Step1: Doping (DMSO,EG)

O Step2: EG Bathing

Referenced Paper

https://doi.org/10.1038/nmat3635

P-type TE material development

80 - P-type TE material 70 Milestone 3.1.2 Milestone 3.2.2 60 50 S (uV/K) 30 20 10 Dec.Meeting Update Beginning Feb.Meeting Update **Timeline**

Electrical Conductivity Improvement for PEDOT:PSS

Seebeck Coefficient Improvement for PEDOT:PSS